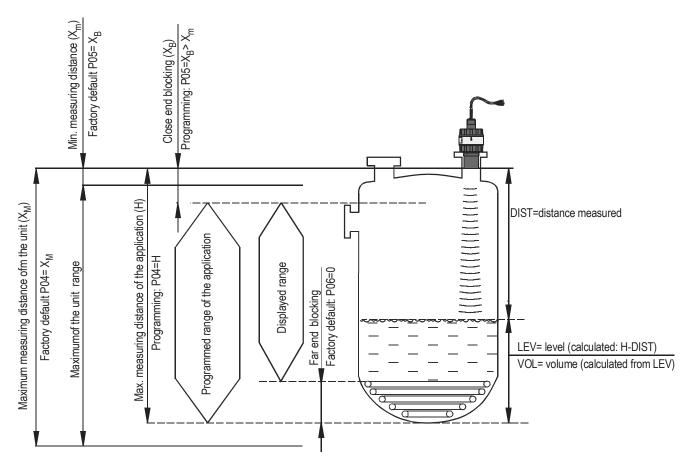


EasyTREK SCA-300 series compact ultrasonic


level transmitter

PROGRAMMING MANUAL For SCA-3 -4 models with HART

1st edition

Manufacturer: **NIVELCO Process Control Co.** H-1043 Budapest, Dugonics u. 11. Tel.: (36-1)-369-7575 Fax: (36-1)-369-8585 E-mail:sales@nivelco.hu http://www.nivelco.hu

Basic conception and elements of the ultrasonic measurement

CONTENTS

1.	P/	PARAMETERS – DESCRIPTIONS AND PROGRAMMING	2
1.		Measurement Configuration	2
1.	.2	Current Output	8
1.	.3	Relay Output	9
1.	.4	Measurement Optimisation	
1.	.5	Volume Calculation	
1.	.6	Volume Flow Measuring	
1.	.7	32-Point Linearisation Curve	
1.	.8	Service Parameters	21
1.	.9	Additional Parameters of Flow Metering	
2 .	El	ERROR CODES	23
3.	T/	TABLE OF PARAMETERS	
4.	S	SOUND VELOCITIES IN DIFFERENT GASES	26

Thank you for choosing a NIVELCO instrument. We are sure that you will be satisfied throughout its use.

1. PARAMETERS – DESCRIPTIONS AND PROGRAMMING

1.1 Measurement Configuration

P00: - cba Application/Engineering Units

Programming of this parameter will result in loading the factory	default with the corresponding
engineering units.	

а	Operating (measurement) mode	
0	Liquid level measurement	

b	Engineering units (according to "c")	
	Metric	ft
0	m	inch
1	cm	inch

С	Calculation system
0	Metric
1	US

P01: - - ba Measurement Mode

Displayed value on the PC, current output and the switching points of the relays will be interpreted in the engineering units of the (measured or calculated) process value corresponding to the programmed measurement mode. On the other hand the higher the "a" of the programmed parameter value the more (measured or calculated) process values can be displayed on the PC by the EVIEW software. (e.g. if P01=b0 only the Distance, if P01=b5 the Distance the Level, the Volume and the Flow can be displayed. Exception if P01=b2 or b4.)

а	Measurement Mode	Display symbol
0	Distance	DIST
1	Level	LEV
2	Level in percentage	LEV%
3	Volume	VOL
4	Volume in percentage	VOL%
5	Flow	FLOW

FACTORY DEFAULT: 11

P02: - cba Calculation units

а	Temperature
0	C°
1	°F

This table is interpreted according to P00(c), P01(a) and P02(c) and is irrelevant in case of percentage measurement (P01(a)= 2 or 4)

b	Volume		Weight (set also P32)		Volume flow	
	Metric	US	Metric	US	Metric	US
0	m ³	ft ³	-	lb (pound)	m ³ /time	ft ³ /time
1	liter	gallons	tons	tons	liter/time	gallons/time

С	Time
0	Sec
1	Min
2	Hour
3	Day

P03: --- a Values Displayed-Rounding

Measured distance	Resolution
X _{min} – 2m	1mm
2m – 5m	2mm
5m – 10m	5mm

It is important to keep in mind that the instrument is measuring distance as basic quantity.

Displayed VOL or FLOW

Displayed value	Displayed form
0.000 - 9.999	X.XXX
10.000 - 99.999	XX.XX
100.000 - 999.999	XXXX.
1000.000 - 9999.999	XXXXX.
100000.000 - 99999.999	XXXXXX.
1 million – 9.99999*10 ⁹	x.xxxx : e (exponential form)
over 1*10 ¹⁰	(overflow) Err4

Rounding

Parameter value "a"	Steps in the displayed value
0	1 no rounding
1	2
2	5
3	10
4	20
5	50

The resolution depending on the distance can be considered as a kind of rounding that will be contained in all further value (of level, volume or volume flow) calculated. Therefore if programmed for DIST or LEV measurement the setting of P03 is irrelevant.

Obviously the decimal position will be shifted with increasing value displayed. (See table at the left).

Values over one million will be displayed in exponential format whereas the value (e) represents the exponent. Over the value of $1x10^{10}$ Err4 (overflow) will be displayed.

A couple of millimetres of fluctuation of the basic DIST value (e.g. due to waves) will be enlarged by the mathematical operations. This enlarged fluctuation in displaying VOL or FLOW can (if disturbing) be avoided by rounding to be set in P03. Rounding value 2, 5, 10 etc represents the steps by which the calculated value will be changed in its (one or two) last digit(s).

Examples:

P03=1 steps by 2: 1,000; 1,002; 1,004

P03=5 steps by 50: 1,000; 1,050; 1,100 or 10,00; 10,05(0); 10,10(0); 10,15(0) (the 0 from the steps 50, 100, 150 etc will not be displayed)

P04: Maximum measuring distance (H)

The maximum measuring distance is the only one parameter that has to be programmed for each application other than distance measurement mode. The DEFAULT value of P04 see table below:

EasyTREK	Maximum measuring distance (X _M)
Level transmitters	(m/ft)
SCA-38_	6 / 20
SCA-36_	10 / 33

Keep in mind that

LEVEL (as the result of the measurement) = P04 (H value, programmed) – DISTANCE (measured by the device)

Since the accuracy of level (and all further calculated) value depends on the accuracy of the max measuring distance of the application which is the distance between the sensor face and the tank / silo bottom.

To obtain the best accuracy for a liquid level measurement, measure this distance in the empty tank with the EasyTREK.

FACTORY DEFAULT: according to the table

P05: Minimum measuring distance (Close-end blocking)

The EasyTREK will not accept any echo within the blocking distance set here.

Automatic Close-end-blocking (Automatic Dead Band control) (P05= X_m)

By using the factory default value, the unit will automatically set the smallest possible close-end-blocking distance i.e. the dead band.

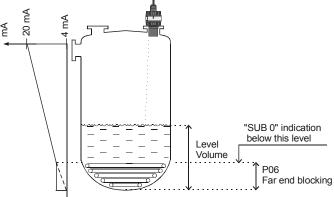
Manual close-end-blocking (P05> X_m)

Manual close-end-blocking would be used for example to block out the echo originating from the bottom rim of a stand-off pipe or from any object protruding into the ultrasonic cone near to the transmitter.

By entering a value, higher than the factory default, the minimum measuring range will be extended and fixed to the specified value.

EasyTREK	Minimum measuring distance (dead band)	
Level transmitters	(m/ft)	
SCA-38_	0,25 / 0,82	
SCA-36_	0,35 / 1,2	

FACTORY DEFAULT: automatic dead band control


P06: Far-end blocking

A). Level measurement

Far end blocking is used to neglect incorrect level/volume readings and output actions below a preset level. In the far-end of the measuring range, for example tanks with heaters or other interfering objects (sludge, cone of silo etc.) may cause faulty readings.

If the level of the medium sinks below the blocked out range:

- "Sub 0" will be indicated for the level and volume below 1/8 value of P06
- Distance value is not interpretable
- Current output will hold value corresponding to the far end blocking level

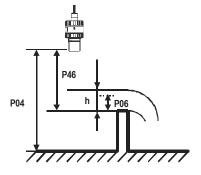
If the medium level is above the blocked out range:

The calculation of level and volume will be based on the programmed tank dimensions, therefore the measured or calculated process values will not be influenced in any way, by the far end blocking value.

B). Open channel flow metering

Far end blocking will be used to neglect incorrect volume flow readings and output actions below a pre-set level, where accurate volume flow calculation is not possible any more.

If the liquid level in the flume/weir falls below the blocked out range:


The EasyTREK will act as follows:

- Indicate "No Flow" on the Display (Q=0)
- Hold current value corresponding to Q=0

If the level in the flume/weir is above the blocked out range:

The calculation of volume flow will be based on the programmed flume/weir data, therefore the measurement values will not be influenced in any way, by the far end blocking value.

1.2 Current Output

P10: Value (of distance, level, volume or flow) assigned to 4 mA current output

P11: Value (of distance, level, volume or flow) assigned to 20 mA current output

Values are interpreted according to **P01(a)**. Please note that in case of programming for (LEV or VOL) % measurement the min and max value has to be entered in the relevant engineering units of LEV (m, ft) or VOL (m³, ft³).

Assignment can be made so that the proportion between the change of the (measured or calculated) process value and the change of the current output be either direct or inverse. E.g. lev 1m assigned to 4mA and lev 10m assigned to 20mA represents direct proportion and lev 1m assigned to 20mA and lev 10 m assigned to 4mA represents the inverse proportion.

FACTORY DEFAULT: P10 (4mA); 0 P11 (20mA)

P12: --- a Error indication by the current output

In case of error the EasyTREK will provide one of the current outputs below. (For errors and their indications see Chapter 7).

а	Error indication (according to NAMUR)	
0	Hold last value	
1	3.6 mA	
2	22 mA	

1.3 Relay Output

P13: --- a Relay function

а	Relay	Also set:	
0	DIFFERENTIAL LEVEL CONTROL (Hysteresis control)	P14	P14, P15 There is a need to set
	Relay is energised if the measured or calculated value exceeds the value set in P14 Relay is de-energised if the measured or calculated value descends under the value set in P15	Relay Energised:	(in level min 20mm) hysteresis between P14 and P15
1	Relay is energised in case of Echo Loss	-	
2	Relay is de-energised in case of Echo Loss	-	
3	COUNTER Used for open channel flow metering. A 140 msec pulse is generated every 1, 10, 100, 1.000 or 10.000 m ³ according to P16.	20m ³ 10m ³ 10m ³ Relay → 200 msec Time De-energised: ▷ ▷ ▷	P16= 0: 1m ³ P16= 1: 10 m ³ P16= 2: 100 m ³ P16= 3: 1.000 m ³ P16= 4: 10.000 m ³

FACTORY DEFAULT: 2

P14:	Relay parameter – Setpoint value
P15:	Relay parameter – Setpoint value
P16:	Relay parameter – Pulse rate see P13(3)

FACTORY DEFAULT: P14=0, P15=0, P16=0

1.4 Measurement Optimisation

P20: --- a Damping

Use this parameter to reduce unwanted fluctuation of the display and output.

а	Damping		LIQUIDS		
	time (seconds)	None/moderate fume or waves	Heavy/dense fume or turbulent waves		
0	no filter		Recom	mended for testing only	
1	3	applica	ible	not recommended	
2	6	recommended		applicable	
3	10	recommended		recommended	
4	30	recommended		recommended	
5	60	recommended		recommended	
6	100	applicable		applicable	
7	300	applicable		applicable	
8	600	not applicable		not applicable	
9	1000	not appli	cable	not applicable	

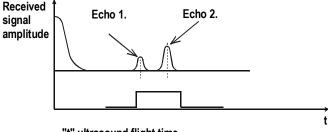
FACTORY DEFAULT: 60 sec

P22: --- a Dome top tank compensation

To reduce disturbing effect of possible multiple echos.

а	Compensation	Applied	
0	OFF	In case the EasyTREK is mounted not in the centre of the top and the top is flat.	
1	ON	In case the EasyTREK is mounted in the centre of a tank with dome-shaped top	

P23: --- a Angle of repose (repose formation) Will not be used


P24: --- a Target tracking speed

а	Tracking speed	Remark	
0	Standard	For most applications	
1	Fast	For fast changing level	
2	Special	Only for special applications	
		(measuring range is reduced to 50% of the nominal value)	
		The measuring window (P25) is inactive and the EasyTREK will respond practically instantly to any	
		target. Recommended to fast target tracking, but usually not applicable for level metering.	

FACTORY DEFAULT: 0

P25: - - - a Selection of Echo within the measuring window

A so-called measuring window is formed around the echo signal. The position of this measuring window determines the flight time for calculation of the distance of the target. (the picture below can be seen on the test oscilloscope)

"t" ultrasound flight time

Some applications involve multiple (target + disturbing) echoes even within the measuring window. Basic echo selection will be done by the Quest + software automatically. This parameter only influences the echo selection within the measuring window.

а	Echo in the window to be selected	Remark	
0	0 With the highest amplitude For most applications (both with liquids)		
1	1 First one For liquids applications with multiple echoes within the Measuring Wind		
2	2 Largest one Recommended if multiple echoes within the Measuring Window		

P26: (m/h)	Level elevation rate (filling speed)
P27: (m/h)	Level descent rate (emptying speed)
	Use these parameters to provide additional protection against echo loss in applications with very heavy fuming.
	These parameters must not be smaller than the fastest possible filling/emptying rate of the actual technology.
	For all other applications, use the factory default setting.
	FACTORY DEFAULT: 2000

P28 --- a Echo-loss handling

а	Echo-loss error indication	Remark	
0	Delayed	During echo-loss, display and analogue output will hold last value. If the echo-loss prevails for 10 sec plus the time period set in P20 (damping time), the reading on the display will change to "no Echo" and the outputs will change according to the "Error Indication Mode" preset in P12 .	
1	None	For the time of echo-loss, display and analogue output will hold last value.	
2	Advance to full	During echo-loss in case of filling, the reading on the display and analogue output will shift towards the "full" tank/silo state with a level elevation rate (filling speed) preset in P26	
3	Immediate	In case of echo-loss, the display will immediately change to "no Echo" and the outputs will change according to the "Error Indication Mode" preset in P12 .	
4	No echo-loss indication in case of empty tank/silo	Echo-loss may occur in completely empty tanks with a spherical bottom due to deflection of the ultrasonic beam, or in case of silos with an open outlet. If the echo is lost when the tank/silo is completely empty, the indication will correspond to empty tank, in all other cases echo-loss indication will function according to the "Delayed".	

FACTORY DEFAULT: 0

P29 Blocking out of object #1

One fix object in the tank/silo that disturb the measurement can be blocked out.

Enter the distance of the object from the transducer. Use the Echo Map to read out the precise distance of disturbing objects.

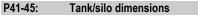
P31: Sound velocity at 20°C (m/sec or ft/sec depending on P00(c))

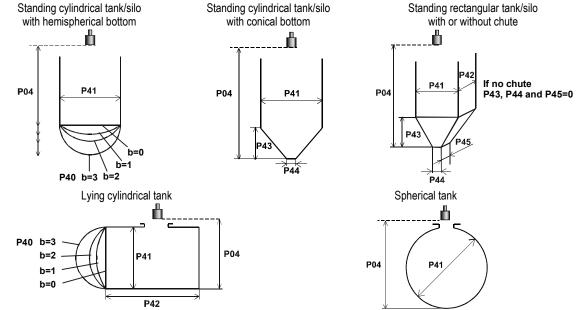
Use this parameter if the sound velocity in the gases above the measured surface differs largely from that of in air.

Recommended for applications where the gas is more or less homogeneous. If it is not, the accuracy of the measurement can be improved using the 32-point linearisation (P48, P49).

For sound velocities in various gases see section "Sound Velocities".

FACTORY DEFAULT: Metric (P00: "EU"): 343.8 m/s, US (P00: "US"): 1128 ft/s


P32: Specific gravity


If you enter value (other than "0") of specific gravity in this parameter, the weight will be displayed instead of VOL. FACTORY DEFAULT: 0 [kg/dm³] or [lb/ft³] depending on P00(c)

1.5 Volume Calculation

P40: - - ba Tank/silo shape

ba	Tank/silo shape	Also to be set
b0	Standing cylindrical tank shape: value of "b" as below bottom	P40(b), P41
01	Standing cylindrical tank/silo with conical bottom	P41, P43, P44
02	Standing rectangular tank/silo (with chute)	P41, P42, (P43, P44, P45)
b3	Lying cylindrical tank shape: value of "b" as bellow bottom	P40(b), P41, P42
04	Spherical tank	P41

1.6 Volume Flow Measuring

P40: - - ba Appliances, formula, data

ba			Appliances, formula	, data			Also to be set:
		Туре	Calculation formula	Qmin [l/s]	Qmax [l/s]	"P" [cm]	
00		GPA-1P1	Q[l/s]= 60.87*h ^{1.552}	0.26	5.38	30	P46
01	a	GPA-1P2	Q[l/s]= 119.7*h ^{1.553}	0.52	13.3	34	P46
02	Nivelco Parshall flume	GPA-1P3	Q[l/s]= 178.4*h ^{1.555}	0.78	49	39	P46
03	all f	GPA-1P4	Q[l/s]= 353.9*h ^{1.558}	1.52	164	53	P46
04	arsh	GPA-1P5	Q[l/s]= 521.4*h ^{1.558}	2.25	360	75	P46
05	8	GPA-1P6	Q[l/s]= 674.6*h ^{1.556}	2.91	570	120	P46
06	ivel	GPA-1P7	Q[l/s]= 1014.9*h ^{1.556}	4.4	890	130	P46
07	Z	GPA-1P8	Q[l/s]= 1368*h ^{1.5638}	5.8	1208	135	P46
08		GPA-1P9	Q[l/s]= 2080.5*h ^{1.5689}	8.7	1850	150	P46
09			General PARSHALL	flume			P46, P42
10			PALMER-BOWLUS	(D/2)			P46, P41
11			PALMER-BOWLUS	(D/3)			P46, P41
12			PALMER-BOWLUS (Rec	tangular)			P46, P41, P42
13			Khafagi Venturi				P46, P42
14			Bottom-step wei	r			P46, P42
15			Suppressed rectangular or	BAZIN weir			P46, P41, P42
16			Trapezoidal weir	-			P46, P41, P42
17			Special trapezoidal (4:	1) weir			P46, P42
18			V-notch weir				P46, P42
19			THOMSON (90°-notch	n) weir			P46
20			Circular weir				P46, P41
21		Gen	eral flow formula: Q[l/s]= 100	0*P41*h ^{P42} ,	h [m]		P46, P41, P42

41-45:	Flume/weir dimensions	
	See next pages.	
	FACTORY DEFAULT: 0	
46:	Distance between transducer face and level of Q=0	
	P46 is always the distance between the transducer face and the FACTORY DEFAULT: 0	level, where the volume flow is 0.
P40= 00		
	Nivelco Parshall flumes (GPA1P1 GPA-1P9) For further details see the Manual of the Parshall flume	Sensor
P40= 09	$ \begin{array}{c c} & \textbf{General Parshall flume} \\ 0.305 < P42(width) < 2.44 \\ & & & \\ Q[m^3/s] = 0.372^*P42^*(h/0.305)^{1.569^*s} \\ \hline & & & \\ 2.5 < P42 \\ Q[m^3/s] = K^*P42^*h^{1.6} \\ P = 2/3^*A \\ \hline & & \\ P = 2/3^*A \\ \hline & & \\ \hline & & \\ P = 2/3^*A \\ \hline & & \\ \hline & & \\ \hline & & \\ P = 2/3^*A \\ \hline & & \\ \hline & & \\ \hline & & \\ P = 2/3^*A \\ \hline & & \\ \hline & & \\ \hline & & \\ P = 2/3^*A \\ \hline & & \\ \hline & & \\ \hline & & \\ P = 2/3^*A \\ \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \\$	Sensor P46

EasyTREK Compact Ultrasonic Level Transmitters

P40= 10	Palmer-Bowlus (D/2) flume Q[m ³ /s]= f(h1/P41)*P41 ^{2.5} , where h1[m]= h+(P41/10)	$\begin{array}{c c} & & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\$
P40= 11	Palmer-Bowlus (D/3) flume Q[m ³ /s]= f(h1/P41)*P41 ^{2.5} , where h1[m]= h+(P41/10)	$\begin{array}{c c} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & &$
P40= 12	Palmer-Bowlus (Rectangular) flume Q[m ³ /s]= C*P42*h ^{1.5} , where C= f(P41/P42)	P04 P41 D/10 P04 P46 P46 P46 P46 P46

P40= 13	Khafagi Venturi flume Q[m³/s]= P42*1.744*h ^{1.5} + 0.091*h ^{2.5}	Sensor
P40= 14	Bottom step weir $0.0005 < Q[m^3/s] < 1$ 0.3 < P42[m] < 15 0.1 < h[m] < 10 $Q[m^3/s] = 5.073*P42*h^{1.5}$ Accuracy: $\pm 10\%$	
P40= 15	$\label{eq:second} \begin{array}{l} \mbox{Suppressed rectangular or BAZIN weir} \\ 0.001 < Q[m^3/s] < 5 \\ 0.15 < P41[m] < 0.8 \\ 0.15 < P42[m] < 3 \\ 0.015 < h[m] < 0.8 \\ Q[m^3/s] = 1.7599^*[1+(0.1534/P41)]^*P42^*(h+0.001)^{1.5} \\ Accuracy: \pm 1\% \end{array}$	P04 P46 P42 P42
P40= 16	Trapezoidal weir $0.0032 < Q[m^3/s] < 82$ $20 < P41[^\circ] < 100$ 0.5 < P42[m] < 15 0.1 < h[m] < 2 $Q[m^3/s] = 1.772*P42*h^{1.5}+1.320*tg(P41/2)*h^{2.47}$ Accuracy: $\pm 5\%$	

P40= 17	$\begin{array}{l} \textbf{Special Trapezoidal (4:1) weir} \\ 0.0018 < Q[m^3/s] < 50 \\ 0.3 < P42[m] < 10 \\ 0.1 < h[m] < 2 \\ Q[m^3/s] = 1.866^*P42^*h^{1.5} \\ Accuracy: \pm 3\% \end{array}$	
P40= 18	V-notch weir $0.0002 < Q[m^3/s] < 1$ $20 < P42[^2] < 100$ 0.05 < h[m] < 1 $Q[m^3/s] = 1.320*tg(P42/2)*h^{2.47}$ Accuracy: $\pm 3\%$	
P40= 19	THOMSON (90°-notch) weir $0.0002 < Q[m^3/s] < 1$ 0.05 < h[m] < 1 $Q[m^3/s] = 1.320*h^{2.47}$ Accuracy: $\pm 3\%$	
P40= 20	$\label{eq:constraint} \begin{array}{l} \mbox{Circular weir} \\ 0.0003 < Q[m^3/s] < 25 \\ 0.02 < h[m] < 2 \\ Q[m^3/s] = m^*b^*D^{2.5} \\ m = 0.555 + 0.418h/P41 + (P41/(0.11^*h)) \\ \mbox{Accuracy: } \pm 5\% \end{array}$	

P46: ---- Distance between transducer face and level of Q=0

P46 is the distance between the transducer face and the liquid at which the flow starts (Q=0). (See figures) During setting of P46 should be **P06=0**

1.7 32-Point Linearisation Curve

P47: --- a Linearisation

Linearisation is the method of assigning requested (calibrated or calculated) level, volume or flow to values measured by the transmitter. It can be used for instance if the sound velocity is not known (LEVEL \Rightarrow LEVEL) or in the case of vertical cylindrical tank (LEVEL \Rightarrow VOLUME) etc.

а	Linearisation
0	OFF (FACTORY DEFAULT)
1	ON

1.8 Service Parameters

P60: (h) Overall operating hours of the unit

Indication varies according to the elapsed time:

Operating hours	Indication form
0 to 999.9h	xxx,x
1000 to 9999h	хххх
Over 9999h	X,xx: e meaning x,xx 10 ^e

- P61: (h) Time elapsed after last switch-on
- P62: (h) Operating hours of the relay
- P63: Number of switching cycle of the relay

Indication same as in P60.

- P64: (°C/°F) Actual temperature of the transducer
- P65: (°C/°F) Maximum temperature of the transducer
- P66: (°C/°F) Minimum temperature of the transducer

In case of a breaking in the temperature measuring Pt10 element "PtErr" will be displayed (See Chapter 7). The transmitter will perform temperature correction corresponding to 20°C.

P71: Distance of the of Measuring Window (read-out parameter)

P72 Amplitude of the Echo in the Measuring (read-out parameter)

P73:(msec) Echo Position (time) (read out parameter)

P74: Signal To Noise Ratio (read out parameter)

Ratio	Measurement conditions
Over 70	Excellent
Between 70 and 30	Good
Under 30	Unreliable

P75: Blocking Distance

The actual close-end blocking distance is displayed. Provides useful information if automatic blocking was selected in P05.

1.9 Additional Parameter, of Open Channel Flow Metering

P76: (LEV) Head of flow

The Headwater value can be checked here. This is the "h" value in the formula for flow calculation.

P77: TOT1 volume flow totaliser (resetable) P78: TOT2 volume flow totaliser (non-resetable)

2. ERROR CODES

Error Code	Error description	Causes and actions to be done
1	Memory error	Contact local agent
No Echo	Echo loss	No echo received (no reflection)
or		
2		
3	Hardware error	Contact local agent
4	Overflow	Check settings
5	Code referring to sensor error or improper installation/mounting, level in the dead band	Verify sensor for correct operation and check for correct mounting according to Users Manual
6	The measurement is at the reliability threshold	Try to find a better location
7	No signal received within the measuring range specified in P04 and P05.	Review programming, also look for installation mistake
12	Linearisation table error: L(1) and L(2) are both zero (no valid data-pairs)	See the Section "Linearisation"
13	Linearisation table error: there are two same $L(i) \mbox{ data in the table }$	See the Section "Linearisation"
14	Linearisation table error: the r(i) values are not monotone increasing	See the Section "Linearisation"
15	Linearisation table error: measured Level is higher than the last Volume or Flow data-pair	See the Section "Linearisation"
16	The checksum of the program in the EEPROM is wrong	Contact local agent
PtErr	Break in the temperature sensor circuit	Contact local agent

3. TABLE OF PARAMETERS

Par.	Page	Description	Code	Par.	Page	Description	c	Code
			dcba	1			d c	b a
P00	2	Application/Engineering Units		P28	13	Echo-loss handling		
P01	3	Measurement Mode		P29	13	Blocking sout of object #1		
P02	4	Calculation units		P30	-	N.A.		
P03	4	Values Displayed-Rounding		P31	14	Sound velocity at 20°C		
P04	5	Maximum measuring distance		P32	14	Specific gravity		
P05	6	Minimum measuring dist. (Close-end blocking)		P33	-	N.A.		
P06	7	Far-end blocking		P34	-	N.A.		
P07	-	N.A.		P35	-	N.A.		
P08	-	N.A.		P36	-	N.A.		
P09	-	N.A.		P37	-	N.A.		
P10	8	Value assigned to 4 mA current output		P38	-	N.A.		
P11	8	Value to 20 mA current output		P39	-	N.A.		
P12	8	Error indication by the current output		P40	15	Tank/silo shape / Appliances, formula, data		
P13	9	Relay function		P41	15	Tank/silo dimensions / Flume/weir dimensions		
P14	9	Relay parameter – Setpoint value		P42	15	Tank/silo dimensions / Flume/weir dimensions		
P15	9	Relay parameter – Setpoint value		P43	15	Tank/silo dimensions / Flume/weir dimensions		
P16	9	Relay parameter – Pulse rate		P44	15	Tank/silo dimensions / Flume/weir dimensions		
P17	-	N.A.		P45	15	Tank/silo dimensions / Flume/weir dimensions		
P18	-	N.A.		P46	17	Dist. btw. transducer face and level of Q=0		
P19	-	N.A.		P47	21	Linearisation		
P20	10	Damping		P48	-	N.A.		
P21	-	N.A.		P49	-	N.A.		
P22	10	Dome top tank compensation		P50	-	N.A.		
P23	-	N.A.		P51	-	N.A.		
P24	11	Target tracking speed		P52	-	N.A.		++-1
P25	11	Selection of Echo in the measuring window		P53	-	N.A.		++-1
P26	12	Level elevation rate (filling speed)		P54	-	N.A.		++-1
P27	12	Level elevation rate (emptying speed)		P55	-	N.A.		++-1

EasyTREK Compact Ultrasonic Level Transmitters

Par.	Page	Description	C	Code		Par.	Page	Description		Co	de	
			d d	; b	а				d	с	b a	-
P56	-	N.A.				P78	22	TOT2 volume flow totaliser (non-resetable)				
P57	-	N.A.				P79	-	N.A.				
P58	-	N.A.				P80	-	N.A.				
P59	-	N.A.				P81	-	N.A.				
P60	21	Overall operating hours of the unit				P82	-	N.A.				
P61	21	Time elapsed after last switch-on				P83	-	N.A.				
P62	21	Operating hours of the relay				P84	-	N.A.				
P63	21	Number of switching cycle of the relay				P85	-	N.A.				
P64	21	Actual temperature of the transducer				P86	-	N.A.				
P65	21	Maximum temperature of the transducer				P87	-	N.A.				
P66	21	Minimum temperature of the transducer				P88	-	N.A.				
P67	-	N.A.				P89	-	N.A.				
P68	-	N.A.				P90	-	N.A.				
P69	-	N.A.				P91	-	N.A.				
P70	-	N.A.				P92	-	N.A.				
P71	22	Distance of the of Measuring Window				P93	-	N.A.				
P72	22	Amplitude of the Echo in the Measuring window				P94	-	N.A.				1
P73	22	Echo Position (time) (read out parameter)				P95	-	N.A.				1
P74	22	Signal To Noise Ratio (read out parameter)				P96	-	N.A.				
P75	22	Blocking Distance				P97	-	N.A.				
P76	22	Head of flow				P98	-	N.A.				1
P77	22	TOT1 volume flow totaliser (resetable)				P99	-	N.A.				

4. SOUND VELOCITIES IN DIFFERENT GASES

The following table contains the sound velocity of various gases measured on 20°C.
--

Gases		Sound Velocity (m/s)
Acetaldehyde	C ₂ H ₄ O	252.8
Acetylene	C ₂ H ₂	340.8
Ammonia	NH ₃	429.9
Argon	Ar	319.1
Bensol	C ₆ H ₆	183.4
Carbon dioxide	CO ₂	268.3
Carbon monoxide	CO	349.2
Carbon tetrachloride	CCl ₄	150.2
Chlorine	Cl ₂	212.7
Dimethyl ether	CH ₃ OCH ₃	213.4
Ethane	C ₂ H ₆	327.4
Ethanol	C ₂ H ₃ OH	267.3
Ethylene	C ₂ H ₄	329.4
Helium	He	994.5
Hydrogen sulphide	H ₂ S	321.1
Methane	CH ₄	445.5
Methanol	CH ₃ OH	347
Neon	Ne	449.6
Nitrogen	N ₂	349.1
Nitrogen monoxide	NO	346
Oxygen	0 ₂	328.6
Propane N.A.	C ₃ H ₈	246.5
Sulphur hexafluoride	SF ₆	137.8

July, 2001 sca3802a0600p_01